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ABSTRACT

Antennas with identical patterns differ to the extent in which they n~odify

an incident wave, i.e., in the amount they scatter. An antenna is completely

described by an (infinite dimensional) scattering matrix. The concept of a

minimum scattering antenna introduced by Dicke is generalized to include antennas

with a finite number of accessible waveguide ports and with non-reciprocal com-

ponants.

A canoniral minimum scattering antenna is defined as on, which becomes
"invisible' when the accessible waveguide term-nal.: arc. open circuited. Such

an antenna is shown to be unique once the independent radiation patterns have been

specified. Neither an impedance nor an --dm.ttaLce matrix for such an antenna

exists.

The physical significance of the' :n-iinurn scrttt-rirg antenna concept is

examined from several points of view. Approirite eaecralizations of Dicke' a

results are derived for mu3ktiport ari no--rezip:oczai antennas. The "scattered

power 0, is introduced as a convenient measure of &c4Attering. It is demonstrated,

for a large class of antennas, t•a the scaterced power is quite generally greater

than the absorbed power, equality being attained for minimum scattering antennas

cG this class. This result further justifies the mv4 'niiur-scat.ering terminology.

Arrays of canonical antennas are discussed briefly.
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MINIMUM-SCATTERING ANTENNAS

I. Introduction

The electromagnetic properties of an antenna are only partially described by
its patterns; antennas with identical patterns differ to the extent in which they modify

an incident wave, i.e., in the amount they scatter. The concept of a minimum-
I

scattering antenna was first introduced by Dicke I The approach taken in this paper

is mathematically much simpler and more general in two respects: It includes

antennas with any number of ports and antennas with non-reciprocal components.

The scattering network description of an antenna is introduced in Section II.

and a canonical minimum-scattering antenna is defined as one which becomes

"invisible" when the accessible waveguide terminals are open circuited. Such an

antenna is shown to be unique once the independent radiation patterns have been
specified, and that neither an impedance nor admittance matrix for such an antenna

exists. The canonical antenna is generalized by cascading it with a "transparent"

ZN-port; the result is termed a minimum-scattering antenna.

The physical significance of the minimum-scattering antenna concept is

examined from several points of view in Section I1I. Appropriate generalizations
of Dicke's results are derived for multiport and non-reciprocal antennas. The

scattered power" , is introduced as a convenient measure of scattering. It is

demonstrated, for a large class of antennas, that the scattered power is generally

greater than the absorbed power, equality being attained for minimum-scattering

antennas of this class. This result further justifies the minimum-scattering

terminology. Arrays of canonical antennas are discussed briefly.

II. Canonical Minimum-Scatte ring Antennas.

The network description of a general antenna is indicated schematically in

Fig. 1. The ports at the left, representing the local, accessible waveguide terminals

of the antenna, are numbered from I to N; the ports on the right. N+1,..., represent-

ing the electromagnetic fields on a distant sphere enclosing the antenna, are infinite

m number. At the N accessible ports normalized, rms-voltage, incident and re-

flected wave phasors are defined and collected as elements of the column matrices
1,2

and b , respectively, in the conventional manner . On a distant sphere the

electromagnetic field can be represented as a superposition of a complete, denumer-
ably infinite set of real, orthogonal modes. The modes occur in pairs as incoming

and outgoing mpherical waves (identified with incident and reflected waves of uniform

waveguide terminology). The corresponding modal coefficients, which completely
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Fig. Z - Transparent ZN-port in series with a canonical minimum-
scattering antenna.
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specify the field, are ordered in an arbitrary manner to form the (infinite dimensional)

column matrices I and b , and normalized* so that a• + andb b are the

incident and reflected powers, respectively.

In the absence of any antenna

The general (linear) antenna can now be characterized in a scattering formalism

) --- --- -- (2)

A lossles3 antenna conserves power, a+ a = b+ b and consequently, the scattering

matrix S is unitary,

S+ S = . (3)

As the first step towards an ideal antenna, one demands circuitry such that each

accessible port be reflectionless and decoupled from any of the other accessible ports,

i.e.,

S = 0 (4)

It follows that the ith column of SPa corresponds to the radiation pattern of the antenna

when excited at the ith port alone. Condition (4) will hereafter be assumed.

For an evaluation of the (unnecessary) disturbance or scattering of incident

fields by an antenn& the obvious standard is provided by the absence of any antenna.

i, e., free space. In the 'beence of any anteona the input scattering amplitudes,

I through N, are meaningless, and corresponding entries in the scattering matrix

are therefore omitted. The remainder of the scattering matrix of free space is

S 0- --- •-- (s)-

where in virtue of (1(1) is an infinte dimensional unit matrix.

tA canonical min znw-scatte ring antenna Nwrn: specified radiation patterns

S S, could. therefore, tentatively be defined as a lo0se0s. device 3pproaching (1)

as closely as possible, suitable adjustments at the accessible ports of the antenna

* Note: a denotes the conjugate of the transpose 69 a.
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A
being permitted. The sense in which (1) is to be approached need not be discussed

at this point, sincefor any given S consistent with (3), there exists a unique loss-

less antenna which on open circuit at ports i thro7gh N scattersiexctly as required.

The last statement will now be proved, ..nd the scattering matrix of the canonical

antenna Cound.

On open circuit at ports I through N

b . (6)

Employing (2) to eliminate a. d in favor of and b

b (S S +S ) a (7)

The scattering relation (7) coincides with the standard, free spalce (1) and (5), only if

Q04 S G +S 00 , (8)

which may be solved for S me Conservation of energy then fixes S uniquely, since

(3) is satisfied only if

S = s( (9)

It has therefore been demonstrated that the scattering matrix of the canonical

minimnu• scattering antenna with radiation patterns SpA is

I+
0 ~ S+

Sc U -------- ---------------- 0)

Such an antena is reciprocal when

S÷ (it)

i.e.. SAIR is purely real .

Certain purely formal properties of S are pointed out next. a full discussionC

a( its phvsical signiflcance being reserved until Section MI.

The elgenvalues of S are defined by
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(Sc - "n I) sn = 0, (12)

where s is the eigenvector corresponding to the eigenvalue cr . Since ' is unitary,
-n n c

its eigenvalues lie on the unit circle, n I 1. Since S is Hermitean,its eigen-n C

values are real. Consequently

" -= + 1, n-= 1, , 3,.... (13)n -

The multiplicity of the eigenvelue -I can be shown to be precisely N. For ex-

panding (12) with T = -1, one obtains with some manipulationn

S + I ( 14 a)P~a --n• -n

S PCL S P + -s• = In. (14b)

Equation (14b) implies that snp is in the N-dimensional sub-space spanned by
the N columns of SPa while (t 4 a) associates a unique asnd with each as n. There are

therefore exactly N linearly independent eigenvectors of Sc with eigenvalues -1.

An incidental result which follows directly from (13) is that neither an impedance

nor an admittance matrix corresponding to S exists.c

Consider the effect of inserting a lossless, transparent3 ZN-port.

A 0 Y
S = (- 2 ) (15)0

in series with a canonical antenna S , as illustrated in Fig. 2. The resultantC

antenna has the scatterizL• matrix

'0S
,~y A&

\skI YpspS
c .je-------------------

Antr.nnas characterized by scattering matrices of the form (16) will be termed simply

mi-Imum-scattering antenna*. This terminology is justified by the fact that such an

a.,tenna is rendered invisible by a particular loesless termination of the accessible
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waveguide ports. Further, when reflectionless loads (receivers) are attached at
% A

ports I through N, Sc and Sc scatter identically (Si = S In the special case

S S+ (17)Cy ya

A

S is also a canonical minimum-scattering antenna.c

III. Characteristics of Minimum-Scatterring Antennas

The scattering matrix of a canonical minimum-scattering antenna having N

specified (orthogonal) radiation patterns was constructed in the preceding section.

The construction was found to be unique. In this section the physical significance of

this construct is examined from several points of view.

When an electromagnetic wave a

a =(4 (1 8)

is incident on an antenna S, waves b S a are excited in the N waveguide ports

of the antenna and waves b = S a are reflected into the surrounding space. The

scattered field f due to an antenna is the difference in the external fields when an
4

antenna is present as compared to the situation when no antenna is present. Formally,

or in the special case of a matched antenna. s = 0.

S- (S " I )- a (19b)

As a definite measure of these scattered fields one may introduce &-e concept of"

scattered power

P = i (20)PS

For a canonical minimumn-scattering antenna (10) with matched re:eivers, one

verifies
2Ps I b¢) P PA (2,)
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where P, = I b,2 is the absorbcd power. Moreover, the pattern of this scattered

radiation is a linear combination of the orthogonal patterns in which the antenna

normally radiates, f{ = " Sap3 b. " These results carry over to rninimum-scattering

antennas in general.

The physical mechanism through which an antenna absorbs power from an

incident wave is destructive interference, i.e., the antenna scatters so as to cancel

some of the incident fields. It may be conjectured, therefore, that, quite generally,

P S- PA (22)

This is the case for all antennas with

Is a I = Is + a I(Z23)

as demonstrated in the Appendix. Equation (23) holds for all real excitations of

arbitrary reciprocal antennas or arbitrary-excitation of reciprocal antennas with

real patternl*. For minimum-scattering antennas equality is achieved in eq ýation (22).

When the canonical minimum-.*cattering antenna is reciprocal. S is pure

real, (it), and several significant new features appear. The first has to do with the

symmetry of the antenna patterns. Given an incident plane wave, the function re-

presenting a second wave incident from the opposite direction is the complex conjugate

of the first. Since the spherical mode functions are real. the modal coefficients

representing the second wave a are the complex conjugates of the coefficients re-

presenting the first a&,i i.e.,

a=a 1 . (24)

The power absorbed in the two cases are equal

-I b ahI2 = Isp.Iz= ISsO * 1 . (2)

It follows that the power radiation patterns of such an antenna are symmetrical with

respect to the origin. An elementary dipole illustrates these features.

Consider the possibility that the scattering matrix of an antenna varies withS*
frequency in such a manner as to retain the form of S w S! From the general

c c

*c.f. equation (25).

I



4theorem relating the frequency variation of a lossless reciprocal junction to the

average energy stored in the junction W

_a a > W (26)

for arbitrary a, it follows that W = 0, and hence that

dS

I =. (27)

Finally a brief remark may be entered regarding arrays of canonical minimum-

scattering antennas. Assume the elements to be so spaced that the spheres

circumscribed about each element do not overlap. Each element, on open circuit,

produces no disturbance in any incident field, and therefore the array as a whole is

invisible. Nevertheless, the array is not necessarily a canonical minimum-scatter-

ing antenna, since the orthogonality relations (3) are not necessarily satisfiec

Prescribed feed networks may to some degree of approximation assure this

orthogonality. The properties of an array of such antennas are peculiarly susceptible

to exact computation:

a) The fields radiated by a given element (with all others open circuited) are

rigorously the same as those which would be radiated by the element isolated and

b) The open circuit voltage computed from this field at each one of the other

elements is rigorously that which would be computed for an isolated antenna.

In conclusion, the analysis of minimum..cattering antennas has been greatly

simplified and the range of this concept considerably extended beyond results pre-

v'iously published.
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Appendix: A Relation Between PA and 1PS'

Let

a b~a

and define the scattered power, PSI and the absorbed power, PAt

PS=P -•3"A/2 ; PA = -b1

For a lossless antenna conservation of energy requires

Ia 2 = lb I2 + lb 2

Hence,

P, b 1 ~ 2 + ja 1-2'Re (at~ b

A -[=PI2C~ Ž)
Thus PS> P A if and only if

Re (a b ) < lb I'

Clearly it is sufficient to show that

Consider the dete rkt of the Gram 5 matrix formed from.a, b and the N

columns of S. i.*e.

det a a b S

b+ + b+

aS+b S +S
L O0P

1!
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From tLe lossless constraint

S b =0b +SPa P-•SP Pa,

and
+T

S S

Hence the above determinartal inequality leads to

I ? 1 - ,.+ 2(a+ b I< I bl aZ a12

If now, equation (23),

Is ±I I s+a I,

is satisfied,

I (a bA)I"< IpI (I _a I -b Pb -P

or, in view of con'=-ervation of energy,

Thus (23, ;.s a su.ficient condition for the validity of PS > PA for arbitrary a .
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